Reviving Japan's Dairy Industry, One Milking Robot at a Time

Aya Takada for Bloomberg:  Jin Kawaguchiya gave up a career in finance to help revive Japans ailing dairy industry -- one robot at a time. In a country that relies increasingly on imported foods like cheese and butter, Japans milk output tumbled over two decades, touching a 30-year low in 2014. Costs rose faster than prices as the economy stagnated, eroding profit, and aging farmers quit the business because they couldnt find enough young people willing to take on the hard labor of tending to cows every day. But technology is altering that dynamic. On the northern island of Hokkaido, Japans top dairy-producing region, Kawaguchiya transformed the 20-cow farm he inherited from his father-in-law 16 years ago into Asias largest automated milking factory. Robots extract the white fluid from 360 cows three times a day and make sure the animals are fed and healthy. The machines even gather up poop and deposits it in a furnace that generates electricity.  Cont'd...

MIT Food Computers

From MIT:  The Food Computer is a controlled-environment agriculture technology platform that uses robotic systems to control and monitor climate, energy, and plant growth inside of a specialized growing chamber. Climate variables such as carbon dioxide, air temperature, humidity, dissolved oxygen, potential hydrogen, electrical conductivity, and root-zone temperature are among the many conditions that can be controlled and monitored within the growing chamber. Operational energy, water, and mineral consumption are monitored (and adjusted) through electrical meters, flow sensors, and controllable chemical dosers throughout the growth period. Each specific set of conditions can be thought of as a climate recipe, and each recipe produces unique results in the phenotypes of the plants. Plants grown under different conditions may vary in color, size, texture growth rate, yield, flavor, and nutrient density. Food Computers can even program biotic and abiotic stresses, such as an induced drought, to create desired plant-based expressions... (project homepage)

Japanese Firm To Open World's First Robot-run Farm

Spread , a vegetable producer, said industrial robots would carry out all but one of the tasks needed to grow the tens of thousands of lettuces it produces each day at its vast indoor farm in Kameoka, Kyoto prefecture, starting from mid-2017. The robots will do everything from re-planting young seedlings to watering, trimming and harvesting crops. The innovation will boost production from 21,000 lettuces a day to 50,000 a day, the firm said, adding that it planned to raise that figure to half a million lettuces daily within five years. "The seeds will still be planted by humans, but every other step, from the transplanting of young seedlings to larger spaces as they grow to harvesting the lettuces, will be done automatically," said JJ Price, Spreads global marketing manager. The new farm - an extension of its existing Kameoka farm - will improve efficiency and reduce labour costs by about half. The use of LED lighting means energy costs will be slashed by almost a third, and about 98% of the water needed to grow the crops will be recycled. The farm, measuring about 4,400 sq metres, will have floor-to-ceiling shelves where the produce is grown... ( cont'd )

Greenbot: Driverless Tractor

From Greenbot: The Greenbot was introduced at the Agritechnica 2015 trade fair. The Greenbot is the first driverless machine to be developed especially for professionals working in the green sector who have to carry out repetitive tasks on a regular basis, such as working in fruit cultivation, horticulture, agriculture, or the municipal sector.  The software that controls the fourwheel steering and hydraulic four-wheel drive system is userfriendly, safe and reliable. The Greenbot can be programmed to function fully independent and can be used to replicate tasks recorded in advance using a tractor with a driver. Programs can also be activated using the remote control, and then the Greenbot repeats the instructions. This mode is called 'Teach & Playback. The Greenbot is furthermore able to independently plan its own route and operations for specific applications, such as spraying orchards or mowing public green areas... ( site )

Driverless Tractors and Drones to be Among the Key Applications for Agricultural Robots

The worldwide market for the agricultural robot has seen a boost in 2015 and many new products that are in field tests are expected to be commercially available by 2016.

Robot Can Pick and Sort Fruit

A robotics breakthrough by product design and development firm Cambridge Consultants is set to boost productivity across the food chain - from the field to the warehouse. It paves the way for robots to take on complex picking and sorting tasks involving irregular organic items - sorting fruit and vegetables, for example, or locating and removing specific weeds among crops in a field. "Traditional robots struggle when it comes to adapting to deal with uncertainty," said Chris Roberts, head of industrial robotics at Cambridge Consultants. "Our innovative blend of existing technologies and novel signal processing techniques has resulted in a radical new system design that is poised to disrupt the industry." Â

Advances in farming robotics could address shortage in agricultural workers

By Steve Brachmann for IPWatchDog:  More and more, the agricultural world is looking towards the mechanization of labor processes through robotics as a way of potentially increasing their productivity. Robotics was identified as a sector of investment growth in agricultural tech by an April 2014 white paper on agriculture technologies published by the entrepreneurship and education non-profit Kauffman Foundation. Robotics is a regular focus of ours here on IPWatchdog, most recently visited in our coverage of the incredible advancements in walking and jumping robotics pioneered by Boston Dynamics, a Google Inc. (NASDAQ:GOOG) subsidiary. With American farmers already heavily involved in the regulatory conversation involving the commercial use of unmanned aerial vehicles (UAVs), or drones, we thought that it would be interesting to delve into the world of farming robotics and see the recent advances in that particular field. Its important to understand first that the robotics being developed for commercial use on farms wont be stand-alone humanoid units ranging through fields to pick crops. Any piece of hardware implementing an algorithm which automates some of the manual work of farming falls under this heading. One good example of this is the LettuceBot, a precision thinning technology which works to visually characterize plants in a lettuce row, identify which plants to keep and eliminating unwanted plants to optimize yield. The unit doesnt move by itself but is guided along by a tractor instead. The technology has been developed by Blue River Technology of Sunnyvale, CA, a company which has attracted $13 million in investment between 2011 and 2014 to commercialize this product. The LettuceBots creators hope toprovide the technology as a third-party service to farm owners before manufacturing the unit for commercial sale.  Cont'd...

Stony Brook University Helps Prepare Next Generation of Farmers by Introducing a Hydroponic 'Freight Farm' On Campus

Cited as 4th most environmentally responsible university* in 2015, SBU is first higher ed campus to get a Freight Farm.

AgBot 2016 Powers $50,000 Grant for Grizzly RUV

Although farming has become mechanized, the evolution of agricultural techniques to include unmanned robots provides a unique opportunity.

AGROBOT: Strawberry Harvesters

From AGROBOT: AGB® manages a set of robotic manipulators able to locate and identify your strawberries, selecting them based on their size and degree of ripeness. This system analyzes your fruit one by one, and it is responsible for ordering cutting movements that guarantee accuracy, smoothness, and sensitivity in the strawberry treatment. The fruit, picked with the strictest hygiene conditions, is driven by our FlexConveyor System to the packaging area. Select the ripeness you would pick up. AGvision ® is an artificial vision system that identifies your fruit with maximum accuracy and consistency. Its advanced technology, implement in real time a protocol for morphological and color analysis which systematically return the ripeness of the fruit, discriminating exclusively those strawberries which meets the quality standards previously set by the farmer... ( more details )

Precision Farming Expo 2015

This year attendees can expect to see a lot of Ag focused drone systems and also enjoy interfacing with the people making them but that is not all. Our focus this year is on the "Drones, Data, Droids and Dirt."

Records 1606 to 1616 of 1616

First | Previous

Featured Product

Elmo Motion Control – The Platinum Line, a new era in servo control

Elmo Motion Control - The Platinum Line, a new era in servo control

Significantly enhanced servo performance, higher EtherCAT networking precision, richer servo operation capabilities, more feedback options, and certified smart Functional Safety. Elmo's industry-leading Platinum line of servo drives provides faster and more enhanced servo performance with wider bandwidth, higher resolutions, and advanced control for better results. Platinum drives offer precise EtherCAT networking, faster cycling, high synchronization, negligible jitters, and near-zero latency. They are fully synchronized to the servo loops and feature-rich feedback support, up to three feedbacks simultaneously (with two absolute encoders working simultaneously). The Platinum Line includes one of the world's smallest Functional Safety, and FSoE-certified servo drives with unique SIL capabilities.